Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Datos: La moneda de cambio. ¿Quién está al mando?

Quién controla los datos y por qué eso es poder

Los datos se han convertido en el insumo estratégico clave del siglo XXI: incluyen registros de conductas, gustos, ubicaciones, información médica, operaciones financieras y comunicaciones que, al combinarse y examinarse, generan conocimiento anticipatorio. Quien domina esos datos influye en la atención, la economía y los procesos de decisión, tanto en el plano individual como en el colectivo. A continuación se expone quién detenta ese control, de qué manera lo ejerce, cuáles son sus efectos y qué herramientas pueden ayudar a redistribuir ese poder.

¿Qué entendemos por “datos”?

Los datos abarcan:

  • Datos personales: nombre, domicilio, identificadores y número de documento.
  • Datos de comportamiento: registros de navegación, consultas realizadas, interacciones como clics y adquisiciones.
  • Datos de localización: posición geográfica de los dispositivos, trayectos y desplazamientos habituales.
  • Datos sensibles: información de salud, afinación política, convicciones religiosas y datos biométricos.
  • Metadatos: detalles sobre el momento, lugar y forma en que surge una interacción, que en ocasiones desvela incluso más que el propio contenido.

Actores que controlan los datos

  • Grandes plataformas tecnológicas: empresas dedicadas a motores de búsqueda, redes sociales, servicios de correo, comercio electrónico y sistemas operativos. Reúnen información de miles de millones de usuarios y ponen a disposición infraestructuras de análisis y publicidad.
  • Corredores y agregadores de datos: compañías que adquieren, depuran y comercializan perfiles dirigidos a anunciantes, aseguradoras y diversas organizaciones, operando normalmente de manera discreta y, en muchos casos, sin que el titular sea consciente.
  • Gobiernos y agencias estatales: recogen información con fines de seguridad, recaudación, salud pública e infraestructura, pudiendo obtener datos privados conforme a la ley o a través de mecanismos de vigilancia generalizada.
  • Empresas del sector salud, finanzas y telecomunicaciones: administran datos altamente sensibles y cuentan con la capacidad de determinar usos tanto comerciales como institucionales.
  • Pequeñas y medianas empresas y desarrolladores: capturan conjuntos de datos muy concretos, como los generados por aplicaciones de fitness o sistemas de domótica, que al combinarse aportan profundidad adicional a los perfiles.

Mecanismos de control

Los actores mencionados utilizan múltiples vías para transformar la información en una fuente de poder:

  • Monopolio de la plataforma: cuanto mayor es la base de usuarios, más valiosos son los datos y más difícil es para los usuarios migrar a alternativas.
  • Economía de la atención: algoritmos que priorizan contenidos para maximizar tiempo en pantalla y, por ende, ingresos publicitarios.
  • Modelos predictivos y aprendizaje automático: permiten anticipar comportamientos, optimizar precios, segmentar audiencias y manipular decisiones.
  • Integración vertical: empresas que controlan hardware, software y servicios pueden recoger datos en múltiples puntos del ecosistema (ejemplo: dispositivos, aplicaciones, nube).
  • Intercambio y venta de datos: mercados legales e ilegales donde la información se comercializa, se combina y se revende.

Por qué dominar los datos concede poder

  • Ventaja económica: los datos permiten personalizar ofertas, reducir costes de adquisición de clientes y crear fuentes recurrentes de ingresos publicitarios. Las plataformas con datos extensos pueden capturar gran parte del valor generado en una cadena económica.
  • Influencia política: microsegmentación y mensajes personalizados facilitan campañas políticas dirigidas que pueden afectar la opinión pública y el resultado de elecciones.
  • Dominio de la información: controlar qué se muestra a quién (rankings, recomendaciones) orienta la agenda pública y cultural.
  • Seguridad y vigilancia: el acceso a metadatos y comunicaciones habilita vigilancia masiva, prevención del delito o, en manos autoritarias, represión y control social.
  • Discriminación algorítmica: modelos que usan datos sesgados pueden amplificar desigualdades en créditos, seguros, empleo o justicia.

Ejemplos destacados

  • Escándalo de Cambridge Analytica: uso indebido de datos de millones de usuarios de redes sociales para perfiles psicológicos y campañas políticas, que mostró cómo datos aparentemente inofensivos pueden influir en procesos democráticos.
  • Brecha de Equifax (2017): exposición de datos financieros y personales de alrededor de 147 millones de personas, ejemplificando los riesgos de concentración de datos críticos en pocas entidades.
  • Clearview AI: recopilación masiva de imágenes públicas para reconocimiento facial, con implicaciones para la privacidad y la vigilancia indiscriminada.
  • Sistemas de puntaje social en algunos países: integración de datos públicos y privados para evaluar “confiabilidad” ciudadana, condicionando acceso a servicios y movilidad social.
  • Compartición de datos sanitarios controversiales: acuerdos entre servicios de salud y empresas tecnológicas que generaron debates sobre consentimiento, utilidad y riesgos de uso comercial de datos clínicos.

Efectos en las personas y en la sociedad

  • Privacidad erosionada: pérdida de control sobre información personal y riesgos de exposición no autorizada.
  • Autonomía reducida: decisiones influenciadas por mensajes personalizados y arquitecturas de elección diseñadas para dirigir comportamientos.
  • Riesgo económico: usos discriminatorios que afectan acceso a crédito, empleo o seguros.
  • Fragilidad democrática: manipulación de información y polarización amplificada por burbujas algorítmicas.
  • Seguridad física: vulneración de datos que revela patrones de desplazamiento, vida privada o información sensible que puede facilitar delitos.

Regulación y respuestas sociales

Las reacciones surgen de una mezcla entre normativas legales, exigencias sociales y transformaciones internas dentro de las empresas.

  • Regulaciones de protección de datos: leyes que buscan dar control al titular (derecho de acceso, rectificación, supresión, portabilidad) y exigir responsabilidad a los controladores. Ejemplos: marcos regionales que imponen sanciones y obligaciones de transparencia.
  • Auditorías y rendición de cuentas: evaluación externa de algoritmos, transparencia en los modelos y auditorías independientes para detectar sesgos y riesgos.
  • Movimientos de datos abiertos y soberanía de datos: iniciativas que promueven que comunidades y estados tengan control sobre datos estratégicos, especialmente en salud y recursos públicos.
  • Herramientas técnicas: cifrado, anonimización diferencial, arquitecturas federadas que permiten análisis sin centralizar datos sensibles.

Qué pueden hacer los usuarios y las organizaciones

  • Transparencia y consentimiento informado: exigir claridad sobre usos y duración del almacenamiento; limitar permisos en aplicaciones.
  • Minimización de datos: las empresas deben recolectar solo lo estrictamente necesario y retenerlo por períodos limitados.
  • Auditorías internas y externas: implementar revisiones de modelos y procesos para detectar sesgos y vulnerabilidades.
  • Adopción de tecnologías de protección: cifrado de extremo a extremo, anonimización robusta y soluciones de aprendizaje federado cuando sea posible.
  • Educación digital: formación ciudadana sobre riesgos de compartir datos y prácticas para reducir exposición (gestión de contraseñas, autenticación multifactor).

Riesgos futuros y puntos de vigilancia

Con la proliferación del Internet de las cosas, la biometría y la inteligencia artificial, los riesgos se intensifican: se obtienen perfiles más detallados, se posibilita anticipar estados de ánimo o condiciones de salud y se incrementa la capacidad de influir en dinámicas sociales de manera inmediata. Resulta esencial supervisar la concentración de la infraestructura de IA y el manejo de datos sensibles que facilitan la automatización de decisiones de gran relevancia.

El control de los datos no es solo una cuestión técnica o comercial: define quién tiene capacidad de moldear preferencias, distribuir oportunidades y decidir qué información llega a qué ojos. La concentración de datos en manos de unos pocos crea asimetrías de poder que afectan derechos, mercados y democracias. Las soluciones efectivas combinan regulación robusta, innovación tecnológica orientada a la privacidad y una ciudadanía informada que exija rendición de cuentas. Solo con esos elementos puede equilibrarse la balanza entre el valor económico de los datos y la preservación de dignidad, autonomía y justicia social.

Por Otilia Adame Luevano

También te puede gustar

  • Soberanía digital: ¿Qué significa y por qué su auge?

  • Entendiendo los conflictos que duran años

  • Debate Actual sobre la Gobernanza de la IA a Nivel Mundial

  • Oscar Puente: ¿implicado en la tragedia del tren?